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Multiple factors are involved in the process leading to melanocyte loss in vitiligo including
environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity.
This review aims to highlight current knowledge on how danger signals released by
stressed epidermal cells in a predisposed patient can trigger the innate immune system
and initiate a cascade of events leading to an autoreactive immune response, ultimately
contributing to melanocyte disappearance in vitiligo. We will explore the genetic data
available, the specific role of damage-associated-molecular patterns, and pattern-
recognition receptors, as well as the cellular players involved in the innate immune
response. Finally, the relevance of therapeutic strategies targeting this pathway to
improve this inflammatory and autoimmune condition is also discussed.
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INTRODUCTION

Clinical, translational, and fundamental research studies performed over the last decade have
tremendously improved our understanding of vitiligo physiopathology and new therapeutic
perspectives are emerging for this disease which suffers from the lack of effective treatments.
Vitiligo is a puzzling disease combining multiple intertwined components including environmental
triggers, genetic predisposition, increased oxidative stress, and abnormal immune and inflammatory
response (1, 2). Vitiligo is defined by the loss of epidermal melanocytes, nonetheless several cell
subsets of immune and non-immune cells are involved to induce and/or contribute to their
disappearance. Vitiligo skin is consistently associated with infiltration of T cells with a Th1/Tc1
skewed immune profile which target melanocytes (3, 4). Besides the role of the adaptive immune
response, increasing data highlight a major role of innate immune cell subsets and their immune-
related pathways that could spark the induction of the disease in the “normal-appearing” skin.
Therefore, this short review is focusing on the innate side of the disease, discussing how genetic and
transcriptomic data revealed the importance of innate immunity in vitiligo, as well as the interplay
between epidermal cells (keratinocytes and melanocytes) and innate immune cells to contribute to
the initiation and/or progression of the disease through the release of danger signals, cytokines, and
chemokines, leading to activation of the adaptive immune response and ultimately the loss of
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melanocyte. This better understanding now offers novel insight
into the development of targeted therapies that could prevent the
induction as well as the recurrence of the disease.
GENETIC AND TRANSCRIPTOME DATA

Genome wide association studies (GWAS) have identified over
50 susceptibility loci involved in melanogenesis and immunity in
vitiligo patients (5). On the other hand, a delay in vitiligo age-of-
onset over the past 30 years emphasizes the key role of
environmental factors in triggering vitiligo in genetically
predisposed individuals (6, 7). These GWAS studies not only
demonstrated the implication of genes involved in
melanogenesis and adaptive immunity but also revealed allelic
variations in key genes involved in the innate immune responses,
such as IFIH1, NLRP1, or TICAM1 (7–9).

Transcriptional analysis comparing gene expression profiles
of skin from vitiligo patients with normal skin of healthy
volunteers also emphasized the role of innate immunity (10,
11). Thus, natural killer (NK) cell activation markers, such as
NKG2D, KLRC2, and KLRC4, ligands for NK receptor
(CLEC2B), as well as markers of oxidative stress (CANP and
POSTN) and innate immunity (DEFB103A) were shown to be
increased in vitiligo skin (10). In our study, we also found a
significant increase in NK receptors, including NKTR and
KLRC1, as well as trends for increased EOMES (master
regulator of NK cells), CCL20, and NK-related cytokines
(TNFa and IL-15) (11). Interestingly, activation of these innate
immunity markers was found in the non-lesional skin of vitiligo
patients, suggesting that the activation of the innate immunity
may be present throughout the entire skin surface of patients
(10, 11).

Taken together, these data illustrate that vitiligo patients have
genetic predisposition affecting their innate immune response in
their apparent non-affected skin. Such findings may be indicative
of a subclinical activation of innate immunity, loss of protective
mechanisms to stress (such as defective unfolded protein
response in target cells following endoplasmic reticulum
stress), and/or increased sensitivity to endogenous or external
stress, such as several damage-associated-molecular patterns
(DAMPs) or pathogen-associated-molecular patterns
(PAMPs) (12).
ACTIVATION OF INNATE IMMUNE CELLS
BY DANGER SIGNALS

DAMPs
Several DAMPs have been detected in perilesional skin of vitiligo
patients. Previous studies have shown that the chromatin-
associated nuclear protein High-mobility group-box-1
(HMGB1) could be released by melanocytes under oxidative
stress and could directly impact melanocyte survival (13–15).
Additionally, HMGB1 could bind free DNA and HMGB1-DNA
complexes and induce maturation of vitiligo patients’ dendritic
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cells (DC), as well as the production of cytokines and chemokines
by keratinocytes (16). Another candidate for sensing the immune
system in vitiligo is calreticulin (CRT). In response to stress, CRT
can localize at the surface of immune cells, affecting their antigen
presentation, complement activation, and clearance of apoptotic
cells. Moreover, CRT can translocate to the melanocyte surface
when these cells undergo H2O2-mediated oxidative stress,
increasing melanocyte immunogenicity. CRT may also enhance
the immunogenic potential of melanocytes through their
induction of pro-inflammatory cytokine production, such as IL-
6 and TNFa (17).

Heat shock proteins (HSP) are likely important candidates
bridging stress to the skin with the innate immune response.
Indeed, inducible HSP70 (HSP70i) released in the context of
cellular stress, notably by epidermal cells (including
keratinocytes and melanocytes) has been shown to accelerate
the progression of the disease in a preclinical model (18–20).
Likewise, modified HSP70i prevented or reversed vitiligo in a
mouse and Sinclair Swine models of the disease (21, 22). In
vitiligo patients, the expression of HSP70 in the skin correlated
with disease activity and was lower in patients with stable disease
(23). As discussed below, HSP70i could interact with several cell
subsets, leading to their activation.

Pattern Recognition Receptors
PAMPs are critical in initiation of the innate immune response
through activation of pattern recognition receptors (PRRs).
Implication of PRRs in vitiligo has been demonstrated in
several GWAS, in particular genes encoding TLRs and their
signaling pathway (24, 25). In addition, polymorphisms in NLRs
have been described in patients with non-segmental vitiligo.
Upregulated NLRP3 expression has been detected in
perilesional keratinocytes in vitiligo skin and associated with
higher cutaneous IL-1b expression and increased severity of the
disease (26, 27).

Viral components are likely involved in vitiligo pathogenesis,
as they can trigger activation of the immune system, however
whether viruses can activate the innate immune response in the
context of vitiligo is poorly described. Viruses possess several
structurally diverse PAMPs, including surface glycoproteins,
DNA, and RNA species (28). Virus infection could thus
activate the innate response and potentially trigger a vitiligo
flare. There is some evidence that viral infections in a genetically
predisposed host may induce excessive ROS production by
recruited lymphocytes leading to destruction of epidermal
melanocytes (29). Furthermore, IFIH1, encoding intracellular
virus sensor MDA5, has been identified as a vitiligo susceptibility
gene capable of inducing secretion of CXCL10 and CXCL16
from keratinocytes and inducing infiltration of CD8+ T cells in
vitiligo (30).

Bacteria are among the top producers of PAMPs and could
directly trigger PRRs activation and therefore participate in
activation of the innate immune response in vitiligo, however
their direct role in triggering vitiligo has yet to be proven. While
gut dysbiosis has been reported in several auto-immune
disorders, there exists only one study suggesting skin dysbiosis
in lesional zone of vitiligo patients compared to their non-
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lesional skin; however in that study there was no comparison to
skin microbiota from healthy skin (31). The second study in
mouse model of vitiligo treated with antibiotics has shown that
depletion of certain bacterial strains in the gut induces skin
depigmentation, suggesting possible gut-skin axis in the disease
(32). We have recently demonstrated gut and skin dysbiosis in
vitiligo compared to healthy controls; the most striking
differences were seen in the deeper regions of vitiligo skin (33).
Importantly, these changes were associated with mitochondrial
damage and loss of protective bacteria at the same site with
elevated systemic innate immunity in vitiligo patients.
ROLE OF INNATE IMMUNE CELLS IN
VITILIGO

As suggested above, a large number of innate immunity genes
that confer risk for vitiligo have been identified in genetic studies.
Collectively, these papers undeniably support innate immunity
pathways as critical in the development of the disease, which was
further confirmed at the transcriptional level, with increased
expression of innate immune related genes both in non-lesional
and lesional skin of vitiligo patients (10, 11). If there is activation
of innate immune pathways, naturally we would expect to see
influx or activation of resident innate immune cells in the skin of
vitiligo patients; however, the data in this area of research is only
now starting to emerge. Although it has been known for a while
that there is infiltration of macrophages, inflammatory DCs,
dermal DCs, Langerhans cells, and NK cells to the leading edge
or the lesional sites (34–37), their roles in vitiligo have not been
thoroughly explored. The contribution of inflammatory DCs
(CD11c+ CD11b+) has been demonstrated in DAMP-induced
animal model of vitiligo driven by HSP70 (21), however their
role in human disease remains to be proven. Studies dating over
10 years ago have demonstrated a positive correlation between
levels of macrophage migration inhibitory factor (MIF) in the
blood of vitiligo patients and their disease duration suggesting
MIF may be a useful serum biomarker of vitiligo activity (38–40),
however direct contribution of macrophages to the disease in the
skin is unknown.

Plasmacytoid Dendritic Cells
Plasmacytoid dendritic cells (pDCs) certainly represent an
important player in the initiation of the inflammatory response
and the type I/II IFN signature in vitiligo skin. pDCs have been
involved in various chronic inflammatory dermatoses, including
cutaneous lupus erythematosus and psoriasis, mainly through
their propensity to release high levels of IFNa (41). We showed
that perilesional skin of vitiligo patients in the active phase of the
disease harbors infiltrates of pDCs, associated with a local IFN
response (36). Activation of this cell subset is likely mediated by
the release of DAMPs from epidermal cells, as shown with
HSP70i, potentiating IFNa secretion by pDCs and subsequent
production CXCL9 and CXCL10 chemokines by epidermal cells,
leading to the Th1 adaptive immune response establishment
characteristic of vitiligo skin (42).
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Furthermore, the other question which has been puzzling
researchers was the initial source of the signature vitiligo
cytokine IFNg. We know that IFNg is critical for the
progression of vitiligo through 1) its induction of CXCL9 and
CXCL10 chemokines and thereby recruitment of CD8+ T cells
expressing CXCR3, which are without doubt responsible for the
loss of melanocytes and 2) its direct effect together with TNFa on
melanocyte, through induction of melanocyte detachment from
the basal layer of the epidermis (43). We recently highlighted that
type 1 innate lymphoid cells (ILC1) are also poised to release
IFNg (37).

NK Cells
NK cells are described as a bridge between innate and adaptive
immune system. They are characterized by their early and potent
production of IFNg. As discussed above, the transcriptional data
supporting role of innate immunity in vitiligo is primarily based
on differential gene expression associated with NK cell function,
activity, and cytotoxicity (10, 11). It has been known for almost
30 years that there is an increase in circulating NK cells in the
blood of vitiligo patients with abnormalities in their expression
of inhibitory receptor CD158a and their activity (44–47), yet
their role in vitiligo skin remained unexplored until recently. We
have now confirmed the increased number of cytotoxic NK cells
in not only the blood but also in the skin of vitiligo patients
compared to healthy controls, predominantly in non-lesional
skin (37). Furthermore, vitiligo NK cells are much more sensitive
to stress, produce much larger amounts of IFNg following stress,
and are directly implicated in initiation of long-term adaptive
immunity against melanocytes (37).

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are the innate counterparts of T
cells. In response to IL-12, IL-15, and IL-18, they secrete IFNg; a
signature vitiligo cytokine. We have recently demonstrated
increased presence of ILC1 (but not ILC2 or ILC3) in vitiligo
blood and skin and these cells to be the initial source of IFNg,
which is involved in early melanocyte apoptosis and subsequent
T-cell mediated destruction of melanocytes (37).

Melanocytes
It has been known for a long time that melanocytes from vitiligo
patients are intrinsically abnormal and are more sensitive to
external stress (48, 49), however this defect alone doesn’t explain
the disease pathology as stressed melanocytes remain viable. As
shown in a chicken model of spontaneous vitiligo, innate
immunity is an important link between melanocyte stress and
long-term adaptive immunity (50). Melanocytes have also been
proposed as immunocompetent cells being able to process and
present antigen, upregulate their own co-stimulatory markers
and directly stimulate cytotoxic T lymphocytes following IFNg
stimulation (51, 52). We have recently shown that human
melanocytes express chemokine receptor of the B-isoform
(CXCR3B), whose expression is upregulated in vitiligo
melanocytes compared to healthy melanocytes and this
receptor to play a critical role in anti-melanocyte immunity in
vitiligo (37).
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Together, recent literature highlighted that innate immune
pDCs, NK cells and ILC1 are capable of directly responding to
stressed melanocytes and are critical in initiation of the disease,
making these cells ideal primary target for therapeutic intervention.
THERAPEUTIC PERSPECTIVES

Vitiligo is a chronic inflammatory skin disorder and future
therapeutic strategies might consider targeting the innate
immunity side of the disease to halt initiation and/or
progression of the disease, but such approach could also be
envisioned as a maintenance therapy to prevent relapse.

Topical or systemic immunosuppressive drugs that are
actually used for treating vitiligo such as corticosteroids,
methotrexate or calcineurin inhibitors, have some potential
impact on the innate immune response (53, 54). However,
these agents have a broad impact on innate and adaptive
immunity. Future approaches targeting more specifically the
pathways involved in vitiligo could provide better responses
with safer profile.

The elicitation of DAMPs depends on endoplasmic reticulum
stress and oxidative stress. Many studies have described the role
of the oxidative stress in vitiligo and how it can trigger the
immune response (55–58). However, the efficacy of antioxidants
in treating vitiligo is still a matter of debate as it relies on
inconclusive studies or studies with contradictory results (59).
This discrepancy between robust fundamental evidences and
questionable clinical data could be explained by the differences in
the type of antioxidant therapies used. More effective
antioxidants with better bioavailability could effectively reduce
the oxidative stress in the skin and provide a useful approach in
treating vitiligo. There is increasing evidence showing
mitochondrial alterations with increased production of ROS in
vitiligo skin (60, 61). Compounds protecting specifically against
this kind of mitochondrial damages could be of great interest in
treating or preventing vitiligo relapses. Inhibition of DAMPs
released by epidermal cells could also represent an interesting
approach to prevent activation of innate cells. Indeed, mutant
HSP70i have been shown to prevent auto-immune
depigmentation or induce repigmentation both in mouse and
Sinclair swine models (21, 22).

As detailed above, bacteria are major producers of PAMPs
and alteration of skin and gut microbiome could participate in
activation of the innate immune response in vitiligo (31–33).
Modulating the skin or gut microbiome appears as an appealing
approach. Recent data conducted in atopic dermatitis skin,
demonstrated that topical formulation containing specific
strains of probiotics could improve skin lesions (62).
Additional studies are urgently needed, especially those in
vitiligo, but modulation of microbiome, using prebiotics,
probiotics, postbiotics, or fecal microbiota transplantation,
could be an alternative approach for secondary prevention
in vitiligo.

The development of antibodies targeting specifically the B
isoform of CXCR3, could prevent the initial apoptosis of
Frontiers in Immunology | www.frontiersin.org 4
melanocytes and thus could be an effective preventive
approach (37). Another strategy could rely on direct action on
innate cells themselves. BDCA2 is a C-type lectin specifically
expressed on pDCs, whose engagement inhibits the release of
IFNa. Of interest, the use of a monoclonal antibody targeting
BDCA2 showed improvement of skin lesions in systemic lupus
erythematosus (63), however no preclinical studies have been
performed so far to evaluate the efficacy of such strategy in
vitiligo. In line with the important role of IFNa in disease
pathogenesis, hydroxychoroquine, a TLR7 and TLR9 inhibitor
downregulating IFNa production by pDCs, was shown to induce
repigmentation of vitiligo lesions in a clinical case reports (64,
65). Whether inhibition of IFNa or its receptor could be an
alternative strategy to block the type I IFN pathway in vitiligo has
not yet been assessed.

NKG2D is one of the most frequent allelic variation found in
vitiligo population. It also regulates both NK and T cell responses
and thus, targets both innate and adaptive immune responses
(66), and has been involved in vitiligo pathogenesis (67, 68). The
use of anti-NKG2D antibodies could be a very promising
approach for treating vitiligo.

In line with a therapy that would dampen both innate and
adaptive immune response, IL-15 could represent another
attractive strategy. Indeed, this cytokine is important for both
T cells and NK cells maintenance and function. Recent studies
highlighted the role of IL-15 on resident memory T cells in
vitiligo pathogenesis and the interest to inhibit this cytokine or
its receptor in vitiligo (68–70). Clinical phase II study is about to
start, evaluating the efficacy of AMG714 for treatment of vitiligo
(NCT04338581). Whether such targeting would also impact the
innate response remains to be evaluated.

Targeting multiple cytokine pathways with JAK inhibitors is
showing promising clinical outcome in vitiligo patients, as shown
with the use of tofacitinib (blocking JAK1/3) or ruxolitinib
(blocking JAK1/2) (71–73). Besides targeting IFNg signaling,
such therapies will also likely block IFNa impact on epidermal
cells, as this cytokine signals through JAK1/TYK2. Interestingly,
a phase 2 clinical trial evaluating the efficacy of systemic
administration of a JAK1/TYK2 inhibitor is ongoing
(NCT03715829) and will provide new insights into the
physiopathology of vitiligo.
CONCLUSION

Innate immunity has long time been overlooked in autoimmune
disorders, including in vitiligo. However, from genetic and
transcriptome data to modulation of key innate cells in vitiligo
skin and blood, there are now accumulating and strong evidences
supporting the key role of the innate immunity in pathogenesis
of vitiligo (Figure 1). Activated by the PAMPs and DAMPs, the
innate immunity appears as the bridge between potential
triggering factors of vitiligo flares such as stress, Koebner
phenomenon or infections, and the secondary activation of the
adaptative immune response. These data foster new therapeutic
April 2021 | Volume 12 | Article 613056
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opportunities for vitiligo treatment but also for primary and
secondary prevention. It will also be important to further
characterize the role of the innate immune response in
preventing repigmentation in patients with a stable disease.
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